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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1437

ON POSSIBLE SIMILARITY SOLUTIONS FOR THREE-DIMENSIONAL

INCC?dPRESSIBIEMYCCNAR BOUNDARY-IAYER FLOWS O=

DEVELOPABLE SURFACES AND WITH FROPORTIONKL

MAINSTREAM VELOCITY COMPONENTS

By Arthur G. Hansen

SUMMARY

This report presents an analysis of possible similarity solutions of
the three-dimensional, laminar, incompressible, boundary-layer equations
referred to orthogonal, curvilinear coordinate systems.

Requirements for the existence of similarity solutions are obtained
for the following two cases: flow over developable surfaces; flow over-~
nondevelopable surfaces with proportional mainstream velocity components.
The analysis obtains permissible fomns of mainstream velocity components,

- the square of differential of arc length on the surface, and the simi-
larity parameter. A basic class of surfaces is found from which all other
permissible surfaces may be obtained.

Necessary and sufficient conditions are found for expressing the
ordinary differential equations resulting fran the similarity transforma-
tion in uncoupled form. The analys~s shows that uncoupling is possible
only when the surface is developable sad a suface coordinate system
characterized by (ds)2 = (dx1)2 + (dx2)2 is employed.

INTRODUCTION

Theoretical research on the important problem of three-dimensional
boundary-layer flow has been greatly restricted because of the complex

he information herein was originall.ypresentedas part of a thesis
entitled “Similarity Solutions of the Laminar Incompressible Three-
Dimensional Boundary-Layer Equations” submitted in partial fulfillment
of the requirements for the de~ee of ~ctor of Philosophy at the Case
Wstitute of Technology, May 1958.

3
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nature of the governing equations.
.—.

However, a degree of success has been
achieved in Incompressible-flowanalysis by searching for exact soluticms ..A

of the equations for special types of ma@tream flows. These -et so-
lutions of the three-dimtisional, laminar, incompre~stble boundary-layer
equations have general~ been formulated by use of ‘similarity” tech-
niques (e.g., refs. 1 to 7). In instances where the technique is appli-
cable, the partial differential’equations of the boundary layer reduce
to a system of ordinary differential equations. The corresponding solu-
tions for the boundary-layer velocity components are such that the veloc-
ity profiles differ by, at most, scale factors along coordinate directions. ,t

To date, similarity analyses have been carried out for only ver>
special types of mainstream flows and for special tjpes of coordinate
systems. A question has always existed, therefore, as to the most gen-
eral class of problems amenable to a similarity analysis and as to what
limitations are inherent in its use. This questionis successfully
answered for two-dimensional laminar flows in references 8 to 12. These
investigations show that, in general, similarity solutions can only be
found for mainstream flows in which the velocity varies as a power of the
distance along a surface or as an qonential. R~cently, several inves-
tigations have attempted to determine conditions under which similarity
solutions exist for laminar, incompressible, three-dimensionalboundary-
layer flows (refs. 13 to 17]. ~ investigations of this kind, the
type of coordinate system employed plays ah important role because of
similarity of velocity profiles in coordinate directions. Consequently,
reference 13 considers the special case of a stationary rectangular co-
ordinate’systemand determines what possible mainstream flows referred
to such a system lead to similarity solutions. Reference 14 determines
permissible-mainstream flows referred to polar coordinates;
15 determines mainstream flows confined to regions of small
ation with respect to POW coordinate systems.

The research presented in reference 16 is more general
that in reference 13 or 14. In reference 16 the coordinate
assumed is an arbit~ orthogonal, curvilinear system In
the approach employed therein is similar to that whiqh will
the present report. However, the complexity of the problem

reference
angle vari-

in SCO~ them
system
this respect,
be used in
has required

the application of additimal assumptions, both in reference 16 snd @_
the amlysis given here. In reference 16, ~or example, the mainstream
flow is assumed to be irrotational. In the present analysis, two inde-
pendent assumptions (each different from that of ref. 16) are made and
investigated separately.

—...~.. r

?.

The,first assumption which is applied herein is that the surface
over which the flow takes place is developable. Exe@les of such sur-
faces are cones, cylinders, and, of course,_the plane. Such surfaces
are characterized by the geometric property of zero Gaussian curvature.

P

The second assumption pertains to a restriction on the form of the
bouudary-layer velocity components when the flow takes Place over a _ .$

.-.
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surface which may be nondevelopable. It till be shown that the assump-
tion is equivalent to specifying ~roportionality of Wnstreem velocity
components in reference to a particular coordinate system embedded in
the flow surface.

The results of the present study are ccunparedin detail with those
of reference 16 on page 40. However, it might be well to point out here
that there is a n@or distinction between the philosophy of reference 16
and the present treatment. Here, greater emphasis is given to the geo-
metric aspects of the problem. In reference 16~ a great deal more atten-
tion is given to establishing necessary and sufficient conditions for the
existence of shnilarity solutions.

In the following secticms, general requirements for similarity solu-
tions wilJ first be derived. Then, further developments on the asswnp-
tion mentioned previously will be presented, and specific conditions will
be determined for reducing the boundary-layer equations to ordinary dif-
ferential equations.

Acknowledgement is made to Dr. Gustav Kuerti of Case Institute of
Technolo~ for his interest =d advice in the preparation of this work.

CONDITIONS FOR SIMILARITY SOLUTIONS

Consider a surface in space in which an arbitrary orthogonal coordi-
nate system (X1,X2) has been embedded. Let y* be a coordinate normal

to the swcface (fig. 1). The boundary-layer equations referred to such
a system are the following (refs. 18 or 19):

U1 au2 ~U2 au2 2
“qq q~ ‘“lu2k2 - ‘Lkl

(la)

(lb)

(lC)
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where

U1)U2)V

Y

‘1’k2

hl,h2

u~,U2

boundary-layer velocity cmnponents

directions, respectively

Y*IJ’
geodesic curvatures of coordinate

xl = const., respectively, kl =

—..

---.—

— NACA TM 1437
3

.—
-. .-...--

—. .. .8.-
in the-xl-, X2-, and &-

.-..

.-

lines x. = const. and

metric tensor cmponents related”to the

length on surface by (ds)2 = h@1)2

—

--
1

differential of’arc

+ h@c2)2
.-

inviscid main-flow velocity ccm~onents in ~cinity of surface
..

(All symbols are defined in apyendix A.) =
—

The boundary conditions are:— —
Aty= o)u~=uz=v=o

-..
F

Mm l-q= u~ lim U2 = U2

Two possible situations might nowbe noted relative to the main-
stream velocity cagponents. The first is when neithe~ U1 nor U2 is

identically zero. The second is when one ~-these crkponents is iden-
tically zero, and, consequently, one of the_coordinate lines corresponds
to a streamline of the min flow. For these-two cases (when neither .~~ ___.—.—.
nor U2 is identically zero)

ing similarity solutions, and

as follows:

follow the chssical ap~roach

assume that U1 and U2 are
.-

2=MJA). :
U2 dq

for obtain-

expressib@
----

(2)

(3) -

.
—-

%!he geodesic curvature at a point P of a curve Gmbedded in a -
—
F

surface In space is numerically equal to the curvature of the plsme
curve obtained by projecting the surface curve onto the-taagent plane
to the surface at P. ‘:“~

—
—

-. .-

1
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*

where F(q) and G(TI)are
9 variable ~ defined as

v =

and where g(xl,x2) is an

13 for a detailed
R
m
+ For the case

i% canbe assumed
tions) that U2 ~

5

as yet undetermined functions of the similarity

(4)

arbitrary functicm of xl and x2. (See ref.

explanation on specification of the form of q.)

of one mainstream velocity component identically zero$
without loss of generality (from symmetry considera-
0 and U1 and U2 are expressible as

.x where @ is a function that will be determined

(5)

(6)

in the analysis.

.
Transformed Equations for U1 emd U2 Not Identically Zero

From the continuity equation, equation (lc), and the definitions
for U1 aad U2J it is possible to obtain an expression for the

boundary-layer velocity component v. Substituting equations (2] and
(3) into equation (lc) and using equation (4) give
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Solving equation (7) for &@y and integrating frm”- O to y with
respect to y result in .-.

(8)
.—

where
..

f(xl,x.J = v(x@@) +

——

At this point, it would be well to discuss restrictions on the func-
.

tions F(q) and G(v) restiting fr~ the boundary conditions on Ul,

u2, and V. From equations (2), (3), and (8):
—
..

(1) The boundary conditions U1 = U2 = O for y = O imply

F’(0) =G’(0) =0

(2) The conditions b U1 = Ul and lim U2 = U2’-imply
Y+”

Mm F’(v) =1 and lim G’(~)=1

v+” q+.

(3) The condition v = O for y = O ~p~es

.-....

.-

——

.- ....

.

3
--:-..-

-n

-.

—

g

ii

-“. -.. -.

.=

.——

~ .—

.- .:- -=—
-.

*,:

.-—

“-.
.L

. .

. .

!.”.

d

,. --

-. -.

a

d
—
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.

Now, it can be shown by a slight extension of sn argument presented

-1 in reference 13 that there is no
loss of generality if it is assumed

that F(0) = O and G(0) = 0, which in turn implies f(xl,x2) = 0.
.-

This result will be used in the follotig development.

Substitution of equatias

m and (lb) yields, respectivel-y,
F
m
+

(8) into equations (la)

)
U1k2 FF” - ~2Fl11+

Equations (9) and (10) will be termed the “transformed equations,” and
the principal probla of concern

herein will be to find the necessary

and sufficient conditions for reducing the transformed equations to a
systa of ordinary differential equations.

Before this step is under-

taken, however) the transformed equations will be dete~ned for the

case when one of the mainstr~ velocity components is identica~y zero.



Transformed Equations

component

Now consider the case U7 s

for One kinstrem

Identical Zero

O and define U1

— ---
..— -- -J. — -—

— --- —

—. . .

.-

N.MA m 1437—

-“

Velocity
.-

—

&d 11~ by equa--
tions (5) and (6). Again, the bowdary-~yer veloci~Y c~onent ~ ‘-
can be obtained. The form for v “willbe identical to that given in.
equation (8), with U2 replaced by Us.

substitution of’the e~ressions for Ul, U2) and v into .qua-

tions (la) and (lb), respectively, then gives

.—

(11)
-—

. .

.—

—
(12)

—Equations (11) and (12) are of exactly the same fom as equations
(9) and (10) except for the absence of several terms w~ch are not coef-
Ficients of terms involving F, G, or their derivatives. This fact wil&
be important in determintig the general conditions necessary for reduc-
ing the ‘transformedequations to ordinary differential equations.

.-
3

-.

-s

=—

-.=:

. .

..

— L.

-,.

.—

-- 1+Q
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—
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.

It shouldbe stated that the boundary conditions for G’(q) for
% this case are given by

G’(0) =0

mF lim G’(q) = O
m
+ ~+.

The boundary conditions on F’(~)

Necessa&y Conditions for
y

It is obvious that equations
5 (12) become ordinary differential

are the sane as for the previous case.

Obtaining Similarity Solutions

(9) and (10) or equations (11) and
equations if the coefficients that

depend on xl and ‘x2 are proportional. This assumption will nowbe

introduced (hereafter called assmnption A). The assumption of propor-
tionality is a sufficient condition for the solution of the system of
equations to depend only on q. Whether this is a necess~ condition
will be discussed on page 40. At present, pro~ortionality of the coeffi-
cient is assumed simply as an additional hypothesis under which to solve

● the systems. First, examine the implications of this assumption rela-
tive to equations (9) and (10). As the function g2 serves as a coef-
ficient in both equations, the general requirements are as follows:

●

(13)
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1
q
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Now, the following observations are made. Firs-tof all, g2 cannot
identically zero (see eq. (4)). Therefore, if the individual terms
aul U2 a In U1 ~; —

~’ ~, ~ + ‘zkl’ ‘d q ‘2 are each proportional to g2 (or
.-,.

...-. .-
.
—

.
—

(~w~ u231nu~ – T$
identically zero), the term —

hl ~ ‘q~
+ LJ2k1

)
-—k2
u~ will be

proportional to gz (or ident~cally zero). Similarly, if
.

-.

(
~2

@lnu2

)

~ au2

q~
-& kl+U1k2> ~~ad U2 are each proportional to g2

(Ulabuz(or identically zero), the term —
~ &J~ Uf

hl ~ ‘~q
+ U1k2

)
-~kl

will be proportional to g2 (or identically zero). we conditions h- .. -
posed by equation (13) therefore reduce to the requirement that nine co-
efficients be proportional. Furthermore, various tergs in certain of
these coefficients can be delet d when thes”eterms are required to be

—

5inditidua13y proportional to g . This leaves the following list of nine
terms that must be mutwlly proportional (or identically zero) if simi-
larity solutions of equations (9) and (10) are to be obtained: .

@ &jz

,.-—

.

(14)

.-.- .-



NM2A TM 1437 11
.

Proportionality among the preceding terms is equivalent to specifying a-,
system of partial clifferential equations. Solutions of the equations
determine mainstream velocity components U1 and U2 and the components

hl and h2 of the metric tensor associated with the orthogonal coordi-

nate system. As solutions of these equations will result in equations
(9) and (10) being reduced to ordina~ differential equations, a stated
proportionality between any two terms willbe called “an ordinary differ-
ential equation condition’ and will be abbreviated “o.d.e. condition.”

If o.d.e. conditions are set up for equations (n) and (12), it
will follow that these conditions will be exactly the same as those given
for equations (9) and (l@), except for the replacement of U2 by u~.

Hence, solutions for various functions in one case will correspond ex-
actly to those in t~e other case. In setting up the equations for the
o.d.e. conditions, U2 is therefore used to denote either U2 or U%.

g A general analysis would now involve finding solutions of the sys-
S tem of equations derived frcm set (14) without further restricting
y assumptions on the nature of the unknown quantities. As mentioned in

the INTRODUCTION, this most general problem has not as yet been analyzed
s. because of inherent complexi~. Consequently, the problem will first be

attacked under the assumption that the flow suxface is developable.
This is equivalent to specifying that the Gaussian curvature K of sur-

.
face is identically zero. In turn, this assumption leads to an addi-
tional equation involving hl and h2.

Following the analysis for developa~le surfaces, the problem will
be solved under the assumption that U-JLJ2 is constant with no restric-

tion on surface geomet~. It will be shown later that a consequence of
this assumption (for U2.aU2) is that streamlines of the main-flow cross

coordinates lines at a constant angle.

The requirements for similarity solutions willbe derived according
to the following topical scheme. (No attempt will be ~de here to solve
the corresponding ordina~ differential equations that result.)

(1) Hypothesis: K = O (pp. 12-24)

(b)kl =0, k2=0
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(2) Hypothesis:
—

‘1 = ctiz (Ppo 25-36)

(a) kLk2#0

—
1. kl and k2 nonconstani -.

2. kl and k2 constant

(k1k2 # O and only one choice of “-ki constant will “

be shown to be impossible)

(b) k1k2 = O
—.

ANALYSIS OF POSSIBLE SIMILARITY SOLUTIONS FOR-F~W OVER
—

SURFACES ISOMETRIC WITE TBE EUCIJDFAN PLANX

In the following sections it is assumed that the flow takes place
over a developable surface (i.e., a surface iscmetric with the Euclidean
plane). Relative to this assumption, solutions for hl) hz) kl) k2? %?.
U2, tid g2 will be obtained frm the o.d.e. conditions. Before this

can be carried out, however, certain relations are needed from the in-
trinsic geometry of surfaces. These relatiahs will nowbe developed. .

—

Coordinate Curvature Relations ~or a Surface of

Zero Gaussian Curvature

TWO surfaces are said to be isometric ifit is possible to find a
coordinate system embedded in one surface which”has the same surface
metric tensor components as a coordinate system embedded in the other
smface. Furthermore, if two surfaces are isometric, a-invariant exi-
sts called the “total” or “Gaussian” curvat~e, which till be the sane
for both surfaces. For a system of orthogonal coordinates it can be
shown that the.expression for the Gaussian curvature is —- .-

K=-+&J+r#)+agh+i#$)]f,5)

(See ref. 20, p. 169.)

Substituting the expressions for coordinate geodesic curvature into
equation (15) gives

(16)

—

—

i?

.—

.

.—

s-
W
:“w
k—

—

._

*
.—

- .-

...

A

al

--4 ------
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.

Now employ a theorm from the geometry of surfaces which states that a-.
necessary smd sufficient condition that a surface be isometric with the
Euclidean plane is that the Gaussim curvature be zero (ref. 20, p. 1~}.
Hence, for the case under consideration, from equation (16),

(17}

With this condition relating the coordinate curvatures and metric tensor
components, and with the o.d.e. conditions referred to in the previous
section, it is possible to determine the permissible coordinate systems
and mainstream flows leading to similarity solutions of the boun&wy-
layer equations. Equation (17) clearly shows that kl end k2 cannot
be nonzero constants.

In general, it willbe necessary to tie certain initial assmnp-
tions regarting the numbered terms appearing in set (14) beforea unique
set of o.d.e. conditions can be considered for analysis. This follows
fran the fact that an equation expressing proportionality between two
terms can only make sense if the terms are not identically zero. Con-

. sideration is first given to coordinate systems in which kl # O md
k2 $0.

Reduction of O.D.E. Conditions for kl# 0, k2 #0

Under the assumption that kl~ O and k2 # 0, the terms numbered

@, @$=d@ inset (14) c_otbe identically zero. Hence, the

following o.d.e. conditions prevail:

yj2

$k2= 2
alg al#O

1
(18)

(19)
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Differentiating equation (18) with respect..to xl gives

Similarly, by differentiating equation (19) with respgct to x2 it

follows that

,-
.

It till now be shown that the >Ight sides of e&ations (20) and
(21) cab be simplified in form. Following the s@lification, equa-
tions (20) and (21) til~ be substituted into equation (17)~ and a rela-
tion between U1 and U2 will be established. ~..

..”

. =:. 9-

-.= ___

-*

. ..—

%

G
-.

—

.-. : _-

. . .

.,. ..—
.

The assumed proportionality between the coefficients listed in set
(14) leads tothefollowing set of statements: .—

(1) From the o.d.e. conditiaa for @ snd @,

*= (2+%9’%
—

atiul
—

(2) Either ‘~- S O, or from the o.d.e. contition for a

and @,

m–

. ..-—-.

d

4
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(3) l?mn the o.d.e. condition for @ and @,

(4) Fran the o.d.e. condition for @ and @,

%$=$1+%+2
ahq

‘5)‘ither --s-- s 0, or, as an o.d.e. condition for @

(6) From the o.d.e. condition for @ and @,

From these observations it
be expressible as follows:

where

follows that equations (20) and (21) must

2’1’4’’2+4)
%.2(ti,+.=og)

(22)

(23)

15

n= 0, 1, or 2

m= O. 1. or 2.,

.
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As a consequence of the hypothesis kl # 0, k2 #0, at least one of’the

quantities n, m, ag, or alo must be noni%ro. Now~’by using equati&s

(22), (23), (18), and (19), equation (17) can be rewritten as

An o.d.e. condition between ~ and @ is

~; u;
— k2
U1

= all ==-lsl
U2

Substituting equation (25) into equation (24) results in

~ II?(1+ 2m + aloa~%’) + 1 + 2n + a~1a9H = O
all

where

From equation (26] and the definition of H, it follows that H
a positive constant. Therefore, the following lemma is established.

—.

(24)

—

(25)

(26)

—

:

must be

Lemma 1. - Given an orthogonal coordinate system in which neither
kl nor k2 is identically zero, a necessary condition for equations

(9) ~d (10) or equations (lJ.)and (12) to possess similarity solutions
under assumption A is that

u~ = clti2 (cl a constant) “-
_——

—
where fi2= U2 when considering equations (9) and (10) and =2 = Uy

when considering equations (11) and (12).

Furthermore, from lemma 1 and equation (25) there follows lemma 2.
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Lemma 2. - Given an orthogonal

kl nor k2 is identically zero, a
(9) and (10) and equations (11) and
under assumption A is that

coordinate system in which neither
necessary condition for equations
(12) to possess shilarity solutions ‘

kl = c2k2 (C2 a constant)

With the establishment of lemmas 1 and 2, it now becomes possible
to determine exp13cit forms for the coordinate-line curvature kl and

k2 and the functions hl and h2 through solutions of o.d.e. conditions

from set (14)0 The details of the analysis are presented in appendix B.
The results obtained csn be sumar ized in the following theorem.

Theorem 1. - Given an orthogonal, curvilinear coordinate system em-
bedded in a surface of zero Gaussian curvature and in which neither k?

.L

nor k2 is identically zero and neither U1 nor fi2 is identically

zero. Then, necessary and sufficient conditions for equations (9)-and
(10) or equations (11) and (12) to be reduced to ordinary clifferential
eq~tions-under a similarity

.
(1)hl=

‘2 ‘

(2} kl =

k2 =

(3) gz=

(4) VI =

U2 =

Equations (9)

aPi(xl)q2(x2)

bp=(xl]q~(x2)

transformation and assumption are that

(a # 0) Pi(x~) # O

(b + 0) q~(x2) # O

1

bpl(xl)~z(xz)

c&l(xl]qy-hx2) Cl+o

C2+0

C3+0

and (10} become, respectively,

(5) AIF’2 - A2FF” - A3F’” + A4G’F’ - A5GF” - A6G’2 - (Al + A4 - A6) = O

BIG’2 - A5GG” - A3G’” +B2G’F’ - A=” - B3Ft2 - (Bl +B2 +B3) = O



where

. . C!2n
AL. T

—

..
-

.
>

.

c: ““
A6
..=q

A3 = Cl
c2(rl+ 1)

B2 =
&

.

_..
—

I?ACATM-J4~7

.-

—

---

—

—

.-

‘5 =~(m+ 3)

to, respectively,Equations (11) and (12) reduce
given in (5), except that the first equation has

term and the second has only B3 as a constant term, .

the‘same fozms a: those ~
only- & as a constant

---
. .

Coordinate Systems for Which kl # O, kz$ O._

The following two questions are now posed: — .——

(1) Is there a unique coordinate system corresponding to the metric ‘-
components hl and h2 defined by condition (1) of Theorem 1?

---

(2) What is the nature of coordinate systems d~ned by these
equations 7 .. .... -—.—_-.

The approach to the previous questions can be s&lified somewhat
by carrying out the following transformation of coor~nates. Let

=

The square of the differential of arc length in the (X2,X2)
then given by .-.-

(ds)2= a?X~(dX1)2+ b2X~(dX2)2

(27)

=Yc -“=-. -

system i8
.

(28)

.— . ..-—.. ... ..
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The coordinate
.

and the lines

lines Xl = constant will coincide with xl = constant,

X2 = constant wi3J coincide with x2 = constant. The

metric components are given by

h~ = ax~

2
m h; = bX1
+

(29)

The princiyal difference between the (X1,X2) system ~d the (X1,X2]

system till be in the measur=ent of length along the coordinate lines.
A transformation of the previous type will hereafter be called a “change
of scale” transformation.

~.

2
The surface in which our coordinate system is embedded is assumed

to be isometric with the Euclidean plane. Hence, the question of whether
y or not a unique coordinate system exists with metric components defined
No by equations (29) iS equivalent to asking whether or not a unique trans-

formation of variables exists of the form

Y1 = Y1(X1F2)
.

Y2 = Y2(X1J2) I (30)

.
where Y1 and Y2 are Cartesian coordinates; that is,

(ds)2= (dYl)2+ (dY2)2

This questim is discussed in reference 20. It is shown in this refer-
ence that a necessary and sufficient condition for a suitable transfor-
mation of the form (30) to exist is that the Riemann-Christoffel tensor

formed frm the h? be a zero tensor. For a surface having zero

Gaussian curvature, this condition is satisfied. Furthermore, the
transformation will define a unique rectangular coordinate system ex-
cept for possible translations and rotations.

The second question on the nature of the coordinate system requires
a more detailed investigation, which is presented in appendix C. It iS
shown there that the coordinate lines becconelogarithmic spirals when
referred to the Euclidean plane as a developable surface. If P and CJ
denote polar coordinates, the equations for the coordinate lines
xl . X? = constant and X2 = ~ = constant are given, respectively, by

O dz -Gd
P = C(X1) e

l/d2e@d
P = c(q)

(C8)

(C9)
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where

-..:. -s

C2. Ta2b2
+ b2 -- . .. ——>-

~2 _ a2

b2

.
—

—

— ..

-tP
—

coordinate lines is shown @A typical network of such figure 2.

Permissible main-flow streamline shapes in spiral coordinate system
(k~+O, k~+ O). - The equations for main-flow streamlines in the

(X1,X2) coordinate system or equivalently in the (X~,X2) system are so-

lutions of the equation .-—

—

(31) ‘

From lemma 1, U1f12 = cl. Hence, —. .-
. .—

.

(32) -
—

Equation (32) has the solution
—.—.

Xl = (const.} X; (33)
.—” .-

. .

0
--

the ~ermissible main-flow stresm-
Once again, a-more familiar fozm -—

This, ‘then,is the defining equation for
lines in the (X1,X2) cOOrdi~te SYSteln.

for equation (33) can be obtained by expressing the eq~tion in terms of

(P,e) coortiutes. The transformationbetween the (p,@) and (X1,X2) co-

ordinate systems is given in appendix C by the equations

P = CX1X2 “

In X2
e .d~X1-—

d.1-

(C5)

.
. ..--.

:P
-.-..-

.= -.
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Substituting equation (33) into (C5} gives ..- ---
.

P P&+l (PO a constant)

,=( )

(34)

=dr. $ lnX2-t80 (eO a constant)

If X2 is eliminated from equations (34),

_ = em(%eo)P
P.

where

.=W (d2r ~ 1)
d2r - 1

If m + 0, eqyation (35) is the eqmtion ~or families of logarithmic
. spirals in a planar polar coordinate system. If m = 0, there are

circles in such a system. Finally, if d2r = 1, equation (34] gives
e = constant, that is> radial lines in a p-r polar coor~~te sYst~=

-

Transformation of coordinates to a basic system. - Before leaving

the analysis of this system, both the form for (ds)2 and the eqution
of the main-flow streamlines till be put in a particular form for later
reference. First, a scale transformation is introduced:

ZJa
Xl=e

%2/b

‘2=e

Equation (28) then becomes

The equation for U1 = C2fi2 beccanes

(35)

(36)

(37)
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In the (~1,~2) ccsortinatesystem the equat~on of the main-flow stream-

lines assumes a particularly simple form. A6 the metric tensor compo-
nents are identical, the governing Mfferential equation is

(E2 T72
— =— = Const.
dx~ ‘1

Hence, the streamline eqtition is

a’~l+b’%2+c’ =0

It is of interest to note that the streamlines in the various co-
ordinate systems previously employed cross the coordinate lines at con-
stant angles. This follows from an examination of the formula for the
cosine of the angle e between a streamline and a coordinate line. For
flows in which the mainstream velocity component U2 # O and U1 = c1U2,

(h@q)/(h2~2) ‘cl on a stream~ne in a coordinate system (x1,x2).

The cosine of the angle between the streaml&e and ai xl coordinate

line is then (ref. 20, p. 150)

Cos

A similar result
coordinate line.

dq
e = h:‘-”

‘e..

“dx;
—

-1
s~

“ (hltil);l+c~) l+C;
— .r—

= constant

holds for the angle between the streamline and an x2-

Reduction of O.D.E. Conditions When One Coordinate
—

Curvature is Identically Zero –

Now soluticms of the o.d.e. conditions-are considered when the
curvature of one set of coordinate lines vanishes while the other cur-
vature does not identically vanish. Initially, it is.assumed that
kl = O and k2 *O. The case k2 S 0, k~ ~ O will Follow directly

from symmetry considerations.
-...

The aaal.ysisbased on the o.d.e. conditions and K = O leads
directly.to the following theorem, which is proved in appendix D for
kl =0, k2~0.

Theorem 2. - Let (X1,X2) be a curvilinear orthogonal coordinate ““
system embedded in a surface of zero Gaussian curvature and in which “:

..

.
.

.+

.
---
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kz is zero and kl iS not identically zero. Then, a necessary cOndi-

tion for equations (9) and (10) and equations (11) and (12) to possess. .

stiilarity solutions

q’(xz~ where
h2-- ~z(X2)
(Indices may also be

!l?heform of kl

P(q) ad

under assumption A is that hl=—
q(xz)

P(xl) and q’(x2) are not identically zero.

interchanged uniformall.yin the previous statements.)

and k2 indicates that the coordinate system

(x1,x2) is a modified polar coordimte system when ret’erredto a @ane.

That is, the system (x1,x2) differs from the usual polar coordinate sys-

tem only in scale variations.

The analysis of similarity solutions for polar-type coordinate sys-
tms is completely documented in reference 14. The coordinate system of
this reference canbe deffiedby hl = X2 ad h2 = 1“ me ~a~sis

presented in reference 14 shows that only one form for U1 = c2fi2 is

possible. This form is

.
n mxl

‘1
=axe2

This case is investigated further by introducing a scale change
transformation

X2
xl =Xl,xz=e

The equation for (ds)z on the surface then becomes

(ds)2 = X~(dX1)2 + (-2)2 = e
[

‘Z (dxJ2 1+(dxz)z

Finally, by an orthogonal transformation,

xl =Sinaxl-cosaxz

X9-cosa X, +sina%g

(a a constant)

L

The equation for (ds)2 can

Z(sin
(ds)2 = e

L .

be written

CLZ1+ cos al?z) [(qz +(LE2)2]
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as *~tion (33)’. The equationThis is basi~all.ythe same
for U1 = c2U2 becomes

expression .-
ii

_ -... -----
..-. —

--

= (const.)en’xl-+m~x2‘1 —

which corresponds to equation (37). There~ore, the following important
theorem can be stated.

Theorem 3. - The botidary-layer flow problms tat can be solved
by employing the coordinate system and associated mainstream flows of
Theorem 1 are identical to those that can be solved by employing the
coordinate system and associated mainstream flows of Theorem 2.

—

..—> .:—
—

. .. ...-
Reduction of O.D.E. Conditions When Both

Coordinate Curvatures Vanish ._ —.-

.-.. ---—
The final case to be considered is kl s O and k2 sO. The co---

ordinate lines will therefore be geodesics-of the surface.
--

In the-plane
such a system simply becomes a rectangular, Cartesia.coordinate system.
This particular problem is discussed in reference 13.@nd, hence, details
till be omitted. The results of this analysis with 91 = h2 = 1 give

the following principal forms for Ul, U2, and g2 (note: U2 here

.

—

●

corresponds to an actual velocity component):

—

(1)Ul = ae
%&l

g2 = const. U1
— _-...

—

..-

gz u~
= const. —

xl

—

132 .-
Const.

—

g2 = const. W1 —
Al

U2 . bewl
.

..-—<.—

_.

. .

.
i
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ANALYSIS OF PC6SIBIJ3SIMILARITY SOLUTIONS

FOR U1/ti2= CONSTANT

Throughout the yrevious main section it has been assumed that the
Gaussian curvature of the surface K was identically zero. _As a con-
sequence of this definition, it was determined that U1 = C1U2 in every

case where one of the coordinate curvatures was nonzer~. In the
section it will be assumed at the outset that U1 = c U1 2) and no

tions regarding the nature of K will be made.

Reduction of O.D.E. Conditions for

If it is assumed that kl # O and k2 # O

tion that U1 = C1’2, the o.d.e. COnditiOn for

*

kl+w%o

under the basic

present
assmnp-

assump-

& kl = c2k2

. Two possibilities now exist. One possibility is that kl and k2

are constant. (This was not allowed in the previous analysis except
. for kl = kz = O.) The other possibility is that kl and k2 are non-

Constant. If kl and k2 are assumed nonconstant, the analysis from

the beginning of appendix B to equation (B13) will apply since the
analysis used only o.d.e. conditions and the results of lemmas 1 and 2.
No recourse was made to K = O in that section. Hence, by substituting
the expressions from equations (Bl), (B4), and (B13) into equation (16),
the following expression for. K is obtained:

or

(3s)K=
-k~(c~ + ‘) t ‘*)

On the other hand, if kl = C$2 = const., there results from equation
(16):

K= -k;(c; + 1) (39)



.
-., . . . ,“——

—
—

: ..-
L-

— . -.

NACA TM..>437._26 —
. .

Permissible forms for hl, h2, kl~ kz, and fi2.-. In attempting to

determine permissible forms~ we will initially distinguish between the
c

case where kl and kz :are”nonconstant and the cas% where both are.- —
constant.

From
tween hl

First consider the nonconstant case.

equatiom (B7) ~d (B13), the following re”lationoccurs be-
.

and h2: -:”.:

[1
d~/c2 -

f2(xl)
h2=%~

This equation can be rewritten as —

As kl = c2k2, equation (B1O)

h2 = h1f10(xl)fll(x2~ ._

iS valid:

Substitution of equation (40) into (B1O) then

f- ~h.

which in turn can be written as

r.. - -—

(40)

. ,,. . .

(B1O) > _
—
—— ..- —.-

gives .-

“1hlfio(xl~

-——
. .

Equation (41) is a first-order linear partial Ufferegtial equation
that can be solved by classical methods. In particule.r,if the method
of Iagrange is applied, a general solution for hl is

hl . Clofiz(xl)eQ(:)
(42)

where q(;) is an arbitrary function of “.

w

u= ‘12(X1) + c#13(x2) + const. -..

—

.— ,. a
.-..

.-

... .
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The functions fu(xl) snd f13(x2) are related to flo(xl) ~d f~(x2)
.

by

The corresponding
(40) and (42) and

fl&J = ‘*+O

f~~(xz) = f~s(xz) +0

expression for ‘2 can be determined from equations
iS given by

h2 = clofi3(x2)e
Q(:)

(43)

From equations (42) and (43) the foil.otingexpressions for kl and k2

csm be obtained:

\
kl

C2
=— @e -P

Clo
)

k2 1=-— q$e-9

Clo I
.

If kl and k2 are now considered constant,

Hence,

Similarly,

b2 Inh2

q
= hlh2k1k2

Therefore,

(44)
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2 j
a Inhl

==0
— _.—

The solution to the previous equation leads directly to an equation-of
the form of equation (40), and the analysis that follows is applicable.
However, with constant kl and k2, the solutions of eqyations (44] _
can be written at once as

~ =ln (:”
-1

Const. + Const.} .——
By means of the o.d.e. conditions it is now possible to determine

all possible forms of the function 9 and the remaining unknowns. Be-
fore the conditions are applied, however, the numbered coefficients in
set (14) will be replaced by an equivalent-set obtaingd frcm the original

u!
list after substituting U1 = cl%) kl = c2k2, and g: = (const.)~kl,

following frm @ and
the following:

@,intothe various tern.. This newse%is

D*$2

=.

._—

-.

(45)

...-

.

,“

.

—

—.

—

~

m=.

-=

.

.

*

.

.
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Proportionality between any two of these expressions will constitute
. an o.d.e. condition.

As in the past, it ti_ll
regarding the nature of U2
can be @tained. Four cases
U1 = C1U2).

(1)Case A: 52 = const.

be necessary to make certain assumptions
before a unique set of o.d.e. conditions
are again distinguished. (Note:

atiz
(2) Case B: q+o;

bu2

(3) case c: ~ =0;

(4) Case D: %1 # Oj

.

The analysis of these four
suits cm be summarized in

.

a152
q=

au2
X#o

~~o

cases is presented in appendix E. The re-
the following theorem.

Theorem 4. - Let (X1,X2) be an orthogonal curvilinear coordinate

systan for which kl~ O and k2 # O. Further, assume that

U1 = (const.)ti2. Then, necessary and sufficient conditions for equa-

tions (9) and (10) and equations (11) and (12) to be reduced to ordi-
nary differential equations under assumption A and the given similarity
transformation are that

(1)hl = clp’(xl)e
q(;)

h. = clq’(xg)e
Q(;)

Q -L

where ; = P(xl) +

not to be confused
employed.)

G

Czq(xz) + C3. (The symbols Cl, C2, and C3 are

with pretious cases where these constants were

(2) The following sets of conditions hold for fi2 and V:

(a) ~~ = constant: Q = ln(afi+b)n or q =aii+b

(b) ~2 = re
sP(@: ~

=a~+b
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—

—

(d) ~2 =resq:. q=a~+b or q =ln(a~+b)n

-. —

%P(xl)+tq(xz]
(e) fi2=re :9 =ati -1-b

(3) g2 = (cOnst.)b2kl

where s and t are constants.

—

.- ,.. .—

.+ .

.

At thts point, it is of titerest to determine the cases that are
tistinct fram those refer~d to in Theoren -1. At the outset, note that
in all cases where Q = au + b the equations for hl aad h2
written as can be

“a.
.-lCn

-.

W(xl)eac2q(x2 )hl = (const.)p’(xl)e

= (co~sto)eaczq(xz)$[eap(xl~

WI(xl} =zq(xz)h2 = (const.)q’(x2)e e

= (const.)e
ap(x’) &kac2’(x2!

BY denoting “e
ap(xl) ac2q(x2)by P(xl) and e

by Q(x2)~ the previous
expressions can be written as

.

—

—
,..-

.

—. .-

hl= (mnt@pr(xJQ(x2)
._.

h2= (const.)Q’(x2}p(x1)

— —.
These expressions are the same as those used to define hl

~d h2 in
Theorem 1. It follows, therefore, that k = 0, and the solutions re-
sulting from q = a~ + b duplicate previous soluticms. However, it iS-readily verified that solutions different from those given in Theorm 1

restit when q = in (afi+b)n. .
For n # 0, K # 0, the $orresmnding

surfaces are nondevel~ble. These obstiations lead to..thefolloti~
theorem. .

—
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Theorm 5. - ~1= fo~s for hl~ hz) ~d U2 given ~ ~eor~ 4.
which ae associated with nondevelopable surfaces are characterized by
T = ln(afi+b)n. The express~ons for hl, h2, snd U2 can be written

[ 1
hl = (const.)Pr(xl) a’p(xl) + b’q(~) + c’ n

[ 1~=(const.)q’(~) a’p(xl) + b’q(~) + C’ n n+O

~2 = (const.)~’p(xl) + b’q(~)]m

Geometric considerations. - The specific expressions for hl> h2>
and ~2 given in Theorem 5 mske possible a rather
the geometric aspects of the problem. h order to

P(xl)~ q(~)~ ~d the constants that apwar in the
and h2 sxe chosen 3n such a way that

general analysis of
simplify the smalysis,
expression for hl

h2 = (=1 + bx2)n
.

Given the corresponding differential quadratic form, \
. (ds)2 = (% + bx2)2n ~~)2 + (dx2)2] (46)

the existence of sn associated.class of surfaces is assured (ref. 21,
p. 122). This class of surfaces will now be studied more closely. Con-
sider an orthogonal transformation of coordinates defined by

Under this transformation, equation (46) becomes

(ds)z =
[

]2n[(dxy+(~’)q(a sin CL+ b cos a)X~ + (b sin a - a cos a)%

If a is now chosen such that

asina+bcosa=O

(ds)z .cqx;)qdx;)2 + (dx;)2] (47]

there results
m

.
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where

C= bsina. acosa

Finally, by choosing —

X2 = ii-% @2n+1 (n# -1)

u

()b+ln+l ”*”””.X1. cy ‘1 .

equation (47) can be written

(ds)2 = X9(M1) 2 +(dx2)2

. .

—

(48)

where

It follows frcm the shove equation that m–.cannot be equal to 1.

If n= -1,

c’ In x*‘2 = 2 --

‘1 = c’~
The differential y.uadratic form (47) becomes

—

(ds)2 = e-2x.# (ml}z + (dx J2 (49)

Now consider surfaces in space in which it is possible to embed
coordinate systems having differential forms corresponding to equationa
(48) snd (49). First note that hl h equations (48} aud (49) is a
function of X2 alone. Now for a (ds)2 of the type

(ds)2 = f2(x2)(dx1)2 + (U2)2
—

a specific class of surfaces cau be associated (see ref. 21, p. 206).
These surfaces are surfaces of revolution givenby (Yi Csrtesisn
coordinates) —

=.-

—
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. ‘1
‘1 = Sf(qcos ~

- [a)2(ff)2 dX2 + const.

Jn relation to the present problem this report will first investigate
surfaces for whtch f(X2) . ~. Choosing Xl = O snd eltiinating the
remaining yersmeter show that the surface of revolution is generated by
rotating the curve:

*3==fj’$EQ)
a%out the Y3-sxis. This is slso the
Geis in reference 7.

m
- 1 dYl (50)

class of surfaces investigated by

The nature of the curves can be qualitatively determined from en
. examination of the derivative

Z=m

For O <m < 1 the curve should have the following general shape:

*3
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For m>l or nI<O) the curve has the general shape

Y~

Y~

&

.—

.-

A —.

Finally, investigate the surface of revolution determined by

h~=e
-xz/cr

(seeeq. (49)). The psmmetric equations can be written
-

—.—. .-

= ae-x2h’ xl
‘3. COB ~

—

.1.”●.. ___..

-xZ/c’ xl ~

‘2 = ae sin y

—
.—

--

.-.—.- _

——

‘3=N27-2+C*-
For this particular case, it is known (ref. 21, p. 207) that the surface
of revolution is obtained from revolving the tractrix shown below about
the Y3-axis:

Ys
—.

4J

Y. .

.

-x—

c’
L —

..-
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As indicated in reference 7, the characteristics of the surface are such
that the boundary-layer equations will probably apply over limited regions.
It is, of course, necessary to keep in mind that, in snyflow problem
over curved surfaces, the boundary-layer equations sre valid only in re-
gions where the minimnn vslue of the principal.radii of curvature does
not exceed the boundary-layer thickness.

While a special class of surfaces has been exhibited with coordinate
systems satisfying the expressions for (ds)2 in equations (48) and (49),
it is well to consider what other surfaces might be admissible. The
admissible surfaces are surfaces that are “applicable” to the surfaces
of revolution illustrated previously (ref. 21, pp. 172-174). This means
the class of surfaces obtained frcxnthe surfaces of revolution by bending,
without stretching, compression, or tearing.

The streamlines of the mainstream flows will be lines that make con-
stant angles with the coordinate lties. b systems where one set of
coordinate lines corresponds to meridim curves on a surface of revolu-
tion, the streamlines are the loxodrcmes of the surface.

Reduction oflO.D.E. Conditions When One Coordinate

Curvature Is Idenkicslly Zero

Solutions of the o.d.e. conditions are now to be obtained under the
assumptions that one of the coordinate curvatures vsnishes identically
and that U1 = c1~2.

hitially, consider the case of kl S O. (The case for k2 ~ O then

can be readily determined from symmetry considerations.) Once again, a
set of o.d.e. conditions is obtained by assuning various possible forms
for U2.

The analysis is presented in appendix F and can be summarized in the
following theorem, which is stated for kl#O and k2s0.

Theorem 6. - Let (X1,~) be an orthogonal coordinate system for

which kl#O and ~sO. Further assume that Ul= (const.)ti2. Then

necessary smd sufficient conditions for equations (9) and (10) and (11)
and (12) to be reduced to
tionA are

(1) 52 = const., snd

ordinsry differential eq&tions under assmp-
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or

‘1 = P(xJ@(x2)

Q’b@

‘2=d’q--

‘1 = P(xJ@(x21

. .

—

hz=n
Q’(X2)
— -where
~z(X2)

n+o

(2) —..

P(xl)

‘1==
.=

~f (X2)
h2. — -.

q2(=J

.—

.= -- -. —

>:,, .

MACA TM 1437

——

.-. ----
.,

—

. ..

-. %. G

—

. ... ...---

?
.

.

(3) 62 = (const.)@(x2), =d hl ud hz ere expressed by either
the first or second set of relations in condition (1)

(4) fi2= (const.)qn(~)e ~p(xl)til, ad hl and ‘“h2 are expressed

as the set of relations in condition (2)
.

The function g2 is determined by

gz= ‘(const.)fizkl —.

(bdi.ces maybe uniformelly interchsmged in the previous statements.)

Geometric considerations. - If the Gaussian curvat-me is calculated
from the values of hl snd hz in condition (2) of Theorem 6, it cm be
shown that K s O. Consequently, cases (2) snd (4) are completely
covered by previous smlyses. — .

-.
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The first set of relations for hl snd h2 in condition (1) of
.

Theorem 6 can%e written

,9
‘1 =

‘2=1

by choosing Pl(xl) = 1, !LJX2) = e%a

The qutiatiC differential form then becomes

(ds)2= e2m20=.J2 + (~2)2

!!AIisform is identical to equation (49) with c’ = - ~.

The second set of relations for hl snd h2 in condition (1) of
Theorem 6 can be written

hl= <n

.

.
by choosing

h2=l

qJx2) = -~;’-

P1(X1)= (-n)-n

For this case,

(ds)2 = (X2)-2n(q)2 + (-2)2

This result canbe ccanparedwith equation (46) with m= -n. However, in
this equation it is possible to choose n= -1, which lesds to a devel-
opable surface. (The value m = 1 was not allowed in eq. (49).) Refer-

ring to equation (50) shows that, for m=l and
,=fl

&2@&
a2 /-

and the correspondtig surface of revolution is a cone

(>=1)0

~>> lJ (see fOl-
lowing sketch) or a circular cylinder



— —
- -.

--
.-. . -.- =-.

—
. . .

38 NACA TM 1437
.

Y3
“.—.--..

.

—

—.—
~ Y~

&
~

.. -

As would be expected, the expressions for u~ = Cltiz determined fram

Theorem 6 can resdilybe shown to be identical to e~ressions for U1
determined from Theorem 5 after the form for (ds)2 in Theorem 5 is
transformed into the form determined by Theorem 6.

.—.

Meridian curve for

m=l, ~~1.
a2

This section
ing kls O snd
and this case has

GENERAL

concludes %y observing that further snalysis consider-
k2 = O is not necessary. In this instance K= 0,
been completely analyzed. .

-...

SUMMARY OF REQUDWMENTS FOR THE EXISTENCE OF

SIMILARITY SOLUTIONS ---—

The vsrious results obtained for flows over developable surfaces
and for flows_over nondevelopable surfaces characterized by
U~ . (conSt.)U~ can be summarized as follows. For surfaces of noncon-
stsnt Gaussian curvature, constant curvature, ad zero curvature} a
suitable choice of Gaussian coordinates can be made in each case that

2 to a basi~ ...reduces the correspending forms of hlj h2j UI) ti2,and g
form given later. Associated with each basic form there can be chosen a
characteristic surface of revolution. The meridian curves on the surface
and their orthogonal trajectories constitute the coordinate lines of the
basic systam. All other permissible coordinate systems are obtained frcm
the basic system by a scale transformation snd an orthogonal trausforma-
tion. AU permissible flow surfaces for a given value of K are the
class of surfaces applicable to the characteristic surface of revolution.

The basic forms for hl, h2, Ul) U2, g~,”and the equation for the
associated surface of revolution sxe as-follows: —

(1)K + Constant

n+ 0,1
.:. .~—

c. . . .
..

-----
,. .-. . --.:-

.-=
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(2)

.

.

(3)

h2 =1

U1 = (const.)=2 = ~

!32= (const.) ~

Surface of revolution: obtained by revolving the curve

about the Y3-axis.

K= constant (nonzero)

hl = eu2

h2=l

U~= (const.)ti2= e%

g2= (const.)U~

Surface of revolution:

y3 =

about the Y3-axis.

obtained by revolving the tractrix

$Jm’y. + crest*

Illxl
Ul= (const.)~2= ~ne

!& = (conSt.) ~

Surface of revolution: a cone
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(b)k1=k2=0

‘1 =h2=l

nxl m-1
l.ul=ae ~

.# = (conSt.)Ul

2. U1
n m-1

= sxl~

U1
.gZ= (conSt.) ~

3. ul = ~n

U2 = bq

‘1ii? = (conSt.) —
‘1

nxl
4.ul =&e

I?lxl
U2 = be

.-.
1 . ...-=

—

N&2A m L437 .....

.—

——
—.—

—

gz = (conSt.)Ul

Surface of revolution: circular cylinder

METHOD AND RESULTS OF REFERENCE 16

—
—

—.

—

The assumption of proportionality among coeffici=ts in equations (9)
and (10) and (11) and (12) (assumptionA) was used in preceding sections
as a sufficient condition for reducing these equations to ordinsry dif-
ferential equations. Geis (ref. 16) has shown in the mesmttie that such
proportionality is also a necessary condition for the complete boundary
value problem. He actually shows that the previously mentioned coeffi-
cients divided by g2 are constent. The proof is based on a detailed .
study of these coefficients when the basic eqwtims are subject to the
boundsry conditions on F(q) and G(v). This proof is the content of
section 4 of Geis’ paper. .

.. .-.: ..
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The search after permissible forms of the functions hl~ h2 sad
“

Ul, fi2 proceeds in the present report ~ong lfies mat ~e q~te ~ffer-

ent frcnnwhat is done in the corresponding section 5
Geis discusses a subcase of the case K = 0, nsmely,

rest of his discussion uses the slternate assumption

a(hlul)
~-@2u2)=o

which is satisfied if the main flow is irrotational.

of reference 16.
kl=~=O. The
that

This hypothesis
stends in contradistinction to the assumptions of developable surfaces
or Ul = (const.)fi2 made here. It is r_=arkable that all but two of
the solutions obtained by Geis for Ul) U2) hl, h2, and g2 sxe also

found in the yresent analysis. Jn two exceptional cases Geis
imylicit solutions that were not obtained here. The first of
solutions is characterizedby

gives
these

.
hl=l %=~

.
where cp= cp(xl)is a solution different from (xl + const.) of

@q””+ (P’ - 1}2= o

The second of these solutions is characterizedby

U1 = 9(X1) 62= A~*-

gz = -q+

h.=1 hl-==
L G

‘2

where cp is a nonconstmt solution of

Geis notices, however, that his explicit solutions axe also valid when
his condition of irrotationality is not satisfied.

It might finallybe added that certain other solutions given im-
@icitly in reference 16 are found in explicit form in the present paper..
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It might be mentioned ‘&ain that the emphasis here has been to
exemine the geometric aspects of the problem, that is, to determine the

.

nature of coordinate systems, main-flow streeml.ines,and flow surfaces
fran the solutions found for- Ul, ~2, hl, ~d h2.
be a necessary requirement for fully evaluating the
of the results.

UNCOUPLING OF EQU&TIONS

This would appeai to
T-

physical significance

—---
— -.. .- —-. .. . =-—--. —

.-

The principal advantage of employing stiilarity techniques in an
snalysis of %oundary-layer flows is the reduction of.the pertial differ-
ential equations for the flow to ordinuy “differentialequations. How-
ever, the solution of the system of ordinsry differential equations is
generally difficult to obtain. bspection of equations (9) snd (10) or
equations (Ill)end (12) discloses that the eqpations--areof order three
and nonl.inesr. Solution of systems in the past has Mually required
application of numerical te@niques. If tiwide range of flows is to be
studied, this csm be--laboriousand time-consuming. An additional.diffi-
culty that srises is that in a large numter of cases.the equations are
coupled, which mesns that the functions F(q) and G(q) appear in both
equations. E the equations are uncoupled, and one equation is expressi-
ble h terms of a single function, that equation can-be solved quite
readily, and the values obtained can be used in the solution of the re- -
maining equation. It is of interest to kugw, therefore, for what classes
of flow problems this is possible.

With this concept in mind the present section will determine the re-
strictions on hl, h2, Ul) =d U2 that lead to the uncoupling of equa-

tions (9) and (10) and (11) and (12).

Uncoupled equatioris”inthe tritisl se~se of one equation identically
vsmishing will not be considered. (This could come about in certain -
classes of flow problems in which u~ E O or U2S O snd the main-flow
streamlines have zero geodesic curvature.)

..

The requirement for uncoupling is simply that the coefficients of
terms involving both F end G should vaiiishin either equation (9) or
(10) (or eqs. (n) snd (12)). Without lossof generality the requirement
for uncoupling will be imposed on equation (9) (resultshold also for
(11)). Examination of equations, (9)
ing equations must be satisfied:

ti@lllul

q-@-

—

.—

..

.“.

.

.

and (11) discloses that the follow-

—

+ ~2kl= O (:>)
-

-.— . .“—,...
~...-

.

.-

.

.

...
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(52)

(53)

Equation (53) gives at once the following lemna.

Lemma 5

The ordinsry differential equations (9) snd (10) (or (n) end (12))
me uncou~led only if one of the coordinate curvatures vanishes identi-
cally, that is, only if one set of coordinate lines is a system of
geodesics on the flow surface.

$ Attention is first restricted to fluws over developable surfaces.

$
First, note from equation (51) that, if a HJ~a~= O, then kls O
snd, hence, both sets of coordinate lines ere geodesics. H it is now

y assumed that a in U1/&2 ~ O snd kl# 0, then (see appendix D)
N
v.

u~= C1D2

.
Hence, from o.d.e. conditions @ snd @ in set (14),

g2= c2U1k1

But frcnnequations (51), (52), sad U1 = c1fi2,

w % ‘0

abul aInkl

‘“F= ---%----

Exsmination of equation (17) shows that for K s

Substituting this result in

.

h2 d% –

equation (54)

~
akul

h2~=

-L

gives

kl

(54)

o
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If this expression is in turn substituted in equation (51),

2kl= O ._ Y-

which contradicts the assumption that kl # O. The following lemna now
results.

Lemma 6

—-

—
.

—

For flow over developable surfaces, e&atio&” (9) snd (10) are m—-
coupled only if kl~ k2 = 0, that is, both sets of coordinate lines sre
gecdesics. . ...

, ---

If klsk2s 0, it follows at once f~& equatio~ (51) that
ul = Ul(xl)“ Furthermore, examination of possible forms for Ul$ U2) ~du
‘g2 for this case (see p. 40) shows that in every inst-snce g2 = (const.)+

or g2= (const.)Ul. Hence, with Ul= U1(X1) eq~ti~ (52) becomes (now
it is required that ~2 s U2)

Therefore,
cases (see

MJ2
q’”

the permissible flows can be reduced to
again p. 40):

Inxl
‘2 = be

or

.

the-following

—

---

-.

two

Now, consider flows over nondevelotible surface~ &th K # const.
./k k2 Z O, the permissible solutions for hl, h2j gz, and Ul” can be

takenas those given in case (1) (p. 38):

hl=~
..

-. ——

h2=l .--.

Ul= (const.)B2=~ u -“

g2= (const.)IJJ~

..

-.,,

,:*-= -
.-.

. .

.-

.

—
.—-

.

$
iii

.——

.

—
.

—
:—.

--

—

=
.

.
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Now, for Ul = (const.)~2 it was preciously shown that

QQLo
dx2 -

However, g2 = (const.)~-1, and, therefore,
Substituting the permissible forms for Ul)
(51) gives

$+$=0

Hence, n = -1.

it is necesssry that m = 1.
hl, snd h2 into equation

While the previous.results appesr to lead to a valid case of un-
coupled equations, substitution of the actusl forms into equation (9)
shows that this is not so. As maybe verified, substitution leads “
the equation

F’”(q) = O

The function F(v) csnnot, therefore, fulfill the imposed boundsry
ditions, and this case must be ruled out.

Finally, consider K = constsnt (nonzero). The solutions for
Zandul‘2J g ) of case (2) (p. 39) then apply.

con-

hl)

As

g2= (const.)U1

snd, as once again

W% ‘o
there results

alnul

a% ‘o

This result substituted in equation (51) yields kl = O. This, however,
would require (with k2 = O) that the surface be developable and would
therefore contradict the hypothesis.

The results are smumrized in the following theorem.
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Theorem 7

..
—

The ordinsry differential equations (9) =d (10) me uncoupled if
and only if

is developable, and both sets of coordinate liries
.—

.—

g2 have one of the-two following forms (except for —
$

(1) Flow surface
are geodesics.

(2) Ul,U2; and

change in indices):
nx

I

1
‘1 =ae

(A) U2 = beul

g2 = cu~

—
.%

.. —.. .—
.. - ---

.—

— .

— -.
- .

Equations (9) and (10) have, respectively, the following forms if (A) is
employed:

—

-..
..

[ 1n(F’)2 -~-l - @ill (55)
.—,-. --

nG”F CG!,,m(F’G’ - 1) - — -
2 -.

= o
-- (56)

If the forms of (B) are emplo~d, there result,
tions (9) and (10)

‘EF1)2 -11- (n+@ -cF’” :0

m(F’G’ - 1) - (n + 1) ~ - cG!ll= O

respectively, for equa-

— .-

(57)

(58)

For both sets of”equations the boundery conditions are
. .

- .— .=.- .=

F(O) = F’(O) = G(O) = G’(OY= O
* .—-*.

—

—
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m
F
%’

Mm F’(v) = 1 15m G’(q)=l
q+aJ ~+co

It is not necessary to consider equations (U) and (12) as U2 = O
leads to straight-line flows in the present case.

PRACTICAL APPLICATIONS OF THEORY

From a practicaJ standpoint, similarity solutions might be applied
to the study of boundary-layer flows over such aerodymmic configurations
as wings, missiles, fuselage forms, or chsnnel flows. Frcm the stand-
point of analyzing flows over tigs or in chsnnels, the only type of
analysis that seems promising is the one employing rectangular coordinates
(i.e., coordinate lines are geodesics). The principal reason is that in
such configurations the boundary layer is generally initiated along a
straight line on the surface (e.g., leading edge). This physicsl case
can only be approximated when sn snalysis allows a boundary layer of zero
thickness to exist along such a line. This obviously can only come about
in a rectsmgulsr coordinate system analysis. On the other hand, polar
and spiral coordinate systems-may have particular application to flow over

. such configurations as missiles where the boundary layer develops from a
point (e.g., nose of the missile).

h any of these cases, however, it should be kept in mind that a
similarity snslysis will generally predict only qualitative behavior of
the flow. The restrictions imposed on the main-flow velocity components
wi12, in general, be too severe to conform to a specified flow configura-
tion, sad, at best, an approximation to this flow can be constructed.
Nevertheless, experimental verification of certain aspects of flow behav-
ior predicted by theory has been very encouraging in at least one in-
stance. The investigation presented in reference 1 shows that 13miting-
flow deflection on a channel surface can be accurately predicted.

The calculation of boundary-layer velocity profiles from a similarity
analysis csa also serve as a guide in setting up approximate snalysis of
boundary-layer flows using so-called mcznentum-integral methods. This
method generally requires = a priori specification of the velocity pro-
file shapes, which are then approximated by an snalytic expression. Lack
of information on the forms of three-dimensional velocity profiles has
seriously hsmpered application of this technique.

.

.

CONCLUDING REMARKS

The following conclusions csn be drawn from the snalysis presented:
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1. The requirements for a stiilarity analysis of the boundary-layer
equations for flow over developable surfaces can be completely determined
if the equations are referred to orthogonal coordinates. TWO basic sets
of solutions sre sufficient for aalyzing @l permissible flows.

2. For mainstream flotisover nondevelopable suri’aceswith U1 = C162,
two basic sets of solutions are sufficient for all permissible flows. One
set applies to surfaces with K # const., while the other applies to
K= nonzero const. All permissible flow surfaces we surfaces gecmnetrf-
cslly applicable to two basic classes of surfaces of revolution.

—
3. Uncoupled systems of ordinary differential equations resulting

frm a stiilarity srmlysis occur only when coordinate lines are geodesics
(rectangular system in the plane).

Ih conclusion, the following problems ~ertaintig to the analysis of
shnilsrity solutions seem worthwhile for continued investigation:

1. A general analysis for all possible types of stiilarity solutions
has not yet been evolved in the sense that investigations to date (ref;
16 snd the present paper) have employed certain assumptions to reduce the
complexity of the problem. — ——

2. Solutions of the ordinary differential equations arising in a
similarity analysis ere few in number. Little work has been done on
coupled equations. It would be of interest to study variations in solu-
tions for a range of parsmeter values either through aprogran on high-
speed computing equi~ent or by developing suitable a~-proximation
techniques.

3. Ex!sensionsof the present theory for incompressible lminsr-
boundsry-layer flow to compressible l.aminar-boundary-~ayerflow would
be of interest. Scme investigations of this kind have been carried out
~e.g., ref. 22).

Lewis Flight Propulsion Laboratory
National Advisory Ccmmittee for Aeronautics —

Clevelad, Ohio, June 10, I-858
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APP~lX A

SYMBOLS

constants

constants

constsnts

constants

constants

constsats

constants

constant

functions of ~

arbitrary functions

functions of q

metric tensor for three-dhensional coordinate system

arbitrary function occurring as a factor of ~

square roots 07 metric-tensor components in orthogonal
coordinate system

specific forms for hl and h2

Gaussian curvature of surface

geodesic curvature of coordinate

respectively

constant

constant

definedby eq. (29)

lines of xl and X2,

.

.
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Pi

q.i

r

s

t

Ul)uz

u:
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arbitrary

arbitrary

constant

functions

functions

.-—.

arc length

constant

mainstream velocity components in

function of X1,X2) eq. (6)

common designation for either U2

....

xl- and x2-directions

special designation for
in eq. (42)

boundary-layer velocity

functiou of xl and X2 occurring

, ,..

-=.=

:: .—

—.

components in xi-direction

velocity component
.-

normal to-boundary-layertransformed
surface

coordinates

curvilinear

coordinates

(27)

to flow

defined by eq.

coordinates -.

curvilinear coordinates
—

Cartesian coordinates

physical coordinate normal

shnilarity parsmeter

coordinates defined by eq.

surface
.
—

(C5)

coefficient of kinematic viscosity

(cl)

(42)

function of X1)X2)

arbitrary functionj

eq.

eq.
.

. .*

!::_

___
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Subscripts:
.

ijjjk>z>mjrje denote index numbers

Superscripts:

Primes denote differentiation

51

.

.
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APPENDIX B

ANALYSIS: K = O; kl + O, k2 # O. PROOF

solutions for the various unknowns in set
here for the case K = O;kl#O, ~#O.

—
. -.

.

OF’rfmml -.

{14) on page 10=e “ ‘“-’

— Y- -- . ..+ .——

—
Permissible Forms for klj k2, hl, ‘md h2.-

Before kl, k2, hl) and ~ can be determined, certain other

general results are needed. In this regard, it wifi first be shown that,
under the assumption of neither kl nor .k2 being Identically zero, it

must follow that kl and k2 each possess nonvtiishing first derivatives _ ._---
with respect to both xl and X2. .—

Assume that a derivative of either kl or ~ “-tithrespect to one

coordinate is identically eqti to zero, while the derivative with re- -
spect to the other coordinate is not. —

ak~ ~k~
—

—~ O. It will first be shown
‘Pecificauy’ asswe ~ = 0 ‘d 3%

akl
—“ # O leads to the equation

‘kt ‘he asswtion axz ,. ,.
--— -.

From lemmas 1 and 2 and equation (19),

Hence,

NOW, both a
abkl

~=o’

w
=

X2 o

(Bl)

.-u-
—

(B2)

— . .

In g2@~ and a I.n~2/ax2 cannot be i@ro, for then _

which would violate the initial.assumption. However, if

ahv2
and ~ # O) from eq~tion (B2)~otd.e.condition forX2—

__

—

.

.

.:

. ... . .=---=

—

.

-.-—

c
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@ and @, and lemma 1 there

bInk,

53

results

ah~.

--&& =- --3& =blhzkl

It therefore follows that equation (Bl) holds.

.
condition for @ snd

ahti2

‘d ~
s O, then from equation (B2), o.d.e.

@ , and lemmas 1 and 2,

0X2 0X2

and, again, eqyation (Bl) holds.

Finally, if bOth a ti g2~~ and a

zero, equation (B2), the o.d.e. conditions
lemnas 1 and 2 yield

.
ahk.

b2%%

In ~2/b~ are not identically

for @, @, snd ~, and

.
* = b3h2kl

and equation (Bl) holds.

bkl o
Now, from equation (Bl) and the assumption that — ~

axl ‘

bh2
However, kl ~ = h1h2k1k2 = O contradicts the basic assumption that

1. ‘
neither kl nor k2 vanish identically. Similarly, it can be shown

bkl
that the case ~~0 and~ sO is incompatible with that

ass~tion.

Similar statements hold for k2. Hence, the following lema can
now be-stated.

Lemma 3. - If both kl and k2 are different frcm zero and neither

reduces to a constant, then both coordinate curvatures kl and ~ must
.
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possess nonvsnishing first partial derivatives with.respect to ~oth. xl
and X2. .

By employing a procedure similar to’the one used in establishing
equation (Bl), it is also possible to show that

.)- A

or, by using lemna 2,
d2 bbk2

k2=—
c2h1 ~

Hence, from equation (B4) and the definition

.-

.-

.-

Of ~,

-.

hlkz)

Therefore,

““”$2=

where fl(~) is arbitrary.

From the definition of kl,

~lnhl

‘Zkl = y =

.-

.:

(B3)

%.—

(B4) z

-=.. ---.-

..-=

.- =

.
..; >..

(B5) .. .... -. -“

—

equation-””(Bl),and lemma 2,

—
ahkl afikz

—

%q=dl=

—

-l/all=0
‘“& b ‘2hl “-

l/dl
‘k2=hl.. fz(xl) (B;) .-; _

where f2(~) iS arbitrary. From equations (B5) and (B6) is obtained

[1
d2/c2

hd2/dlc2 f2(x~)
‘2=1 ~

(B7)
.

Now, relations between the various constant6 appearing in equation (B7)
must be found. *—. .

-...-— . . .1-

. .--
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. First of all, by
according to equation

55

differentiating h2k1/dl with respect to xl
(Bl),

Also, frcm equation (B3),

and differentiation of this expression with respect to x2 gives

(B8)

(B9)

From lamna 2 and the definition of kl and k2~ finall.y~

.

In equation (39) substitute for bhl/ax2 ~d bkl/bx2 according
to equations (B1O) and (Bl):

Similarly, equation (B8) becomes, by eqution (B3),

Finally, equations (Bll) and (B12) yield

(B12)

Hence,
.

(B13)
.
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It is now possible
in equation (17) may be
(B4):

—.
— NACA Z311437 ->

--

to evaluate d
i

by noting tht the derivatives
eliminated by he use of,equations (Bl) and

..— —
which, by equation (B3)j becomes

()
(k:+@ l+~=O

when’ce ‘1 = -1 as kl and k2 are assumed nonvan~ing.—

It therefore follows from equation (B13) that
—

C2
—=
%

-1

FYom the previous results, equatims (B5) and (B6), and lemna 2 there
results lemma 4. —

Lemma 4. -
tures, kl and

Under the assumption of nonyanishing coordinate curvature
~ must be expressible as -—-

Expressions for hl and h2 can now be obtained as follows. Frcm
the definition of kl and kz,

,.

.—

—
——

,.

,..

.-.

.“

_=

~ ,.

.; .,.

.

a “h hl

~ = Czfl(xl) (B15)

.

.

~

..
—

—

z

---

-.-..

.... .

:

.-

Hencej hl and h2 must be expressible as a product ~ a function of

xl and a function of x2: .— -:... .—
--

hl = q@q2(x2) (BM) _
. -. .,*: .--*

(B17r”h2 = P1(X1)P2(X2)
..—. .

-.
..
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Substituting expressions (B16)

++&) =

57

and (B17) into equation (B1O) gives

c2P~(@P2(x2)

Neither q~(~) nor P~(~) Cm be identica- zero ~der the assumption

that neither of the coordinate curvatures vanishes identically. Therefore,

q~(x~) = c3P&)
.

P~(x2) = c4@@

Hence, hl and ~ can also be written in the form

hl = c@i(xl)q2(x2) (B18)

% = ‘4s+1)4(% ) (B19)

FYornthe definition of kl and k2 and equations (B18) and (B19),

*

_’ 1 ah2’
%

1
hl~ ~= c3Pi(xl)q2(x2)

1

c4Pl(xl)q2(x2J
t

(B20)

(B21)

Permissible Forms For Ul, 52, and g2

It is noted once more that before a unique set o~ o.d.e. conditions
can be prescribed for the determination of VI and U2, certain assump-

tions regarding the vanishing or nonvanishing of various terms in set
(14) must be made. As the te-_ of interest in set (14) involve the
first derivatives of Ul and U2, the necessary assumptions can be hn-

posed in terms of the vanishing or nonvanishing of these derivatives.
BY recalling from lemma 1 that U1 = c1U2, the fo~ofig four cases
cover all possibilities:

av2
(l)C%seA: ~=CI~#O
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-..—— .

-.— —
-b –(2) Case B:

and

-.
-.

“i?~
.-,, m.. L—

(3) Case C:

—

.. -—--
—. — -—

—

and

(4) Case D:
vanish).

ul and ~2 are nonzero constants (all derivatives

First consider case A: — ..

From the o.d.e. condition for @ and

. au.

@ and lemma 1,
.—

. .. ...-.
-.

eat= c5ulk2
LL

..-—-.
ahul

_-
—.

‘“*~ = CSkzhl
— :=

Ihnployingthe expressions for
(B20), respectively, gives

hl and h2 given iriequations (B16) and
—

alrlu~ d ~pl(xl)

~=c5 dxl

—

.’.M u~ = ~ [Pl(xl)]C5 + f3(x2] (B22)

@ azzd~ and lemma 1,

—

= c2h2~ -.

.

Now, from the o.d.e. condition for
-. —— -.

.—
——

As above, In U1
—-

can be evaluated to obtain -. ,..—
.-.

(B23)

,.” ...:.*

.-
—
-—
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. It then follows from eqgations (B22) and (B23) that U1 and fi2 must
be expressible as

where C7, n, and m are nonzero constants.

(B24)

The form of the function g2 is obtained from the o.d.e. condition
for @ and @ andlemna 1:

Hence,

132= %j?:-%+y(q (B25)

3 If the earessions for kl~ ~~ hl~ ~~ Ulj ~2~ ~d g2 are substituted
y

into remaining o.d.e. conditions, it will be seen that these conditions
3 are satisfied. Hence, for this case, necessary and sufficient conditions.

for obtaining ordinary differential equations from the original partial
differential equations under assumption A have been found.

.
The analysis for cases B, C, and D follows the method outlined

previously. The results are as follows:

CaseB: Ul= (constant) q!#x2) =c1fi2

132
&(x2)

= (constant)
m

Case C: Ul= (constant) p~(x~) =c~fiz

g’ = (constant)
P~-%1)

m

Case D: u~= (constant) =

i32= Constant
Pl(xl)@2T

All results are sumnarized

c1U2

in Theorem 1 in the text.
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APPENDIX c ..
●

—

NATURE OF COORDINATE SYSTEM CORRESPONDING TO K = ‘o;kl+ 0, k2 +“0

The followlng analysis will deal with the dete~ination of the ex-””
plicit form of transfomnation (30).

-
At the outset, the folloiri

‘%
observations are made. Suppose there

are two coordinate systems (@,y ) and (#,xz) functionally related by

.-

-g
t7:

Yi = yqxqxq —
-. ——-,

If hij ~d gi,i~respectively, denote the metric tensors of the system

W axs ~
hij =

——
@- ayJ “

By differentiation of the above expression”-”coupledwith other minor
manipulations (ref. 20, p. 83), it is possible to show that

--

.—

——

—
——. , .-—

.. —.—

.
.-

Wh’=’=X[:,\and):/ denote Christoffel-symbolsbased on grs and

hi+, respectively. (See brief review at end of this ~ppendix.) If tie

.

s~stem (X1,X2) is restricted to be a Cartesian system; all Christoffel
symbols vanish and the above expression becomes ----

This system is then a system of second-order partial ~fferential equa-

tions for the transformation yi = yi(P,x2). By reverting now to the
notation employed in equation (30), the system can be_witten as the
following set of first-order partial differential equations:

.

(cl)
.
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where Y stands for either Y1 or Y2. Evaluation of the Christoffel.
symbols gives the following results:

.

.

The system of equations (Cl} can therefore be written as

(C2)
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It is possible to give particular solutions for Y1 ‘&i Y2 which

satis~ these equations and also satisfy t~e orthogonality requirement
B-

..

The functions

where

aY~ aY~ ay2
~~ ‘+q

Y~ (=cX1X2 COS d hl

Y2
(

= CX1X2sin d in

C2 = a2b2

a2 + #

represent a particular solution of the
solution of the

where the CLiJ

are constants.

ay2.
q=o

—.

—

.....

_—.
:...

--

xl )-&llx2

xl - &lx2
) I

(C3)

-.

-.
- -.

—

. ..”

.

.-
.——

—

system(C2). The most general
system can be therefore written as

—

e.
—

(C4}
.-.+

—— .
are the elements of an orthogonal matrix and the yi

Eqp.ation(C4) merely represents a rotation and transla-
.

tion of the coordinate system definedby (Y1,Y2). - -.

In order to better ascertain the nature of the (X1,~) coordinate
system, let --

P = CX1X2

In X2
e =d~Xl-—

d I (C5)

be a transformation of the (X1,X2) system to a polar coordinate system;

that is, in terms of P and G,
—

-.

‘1 =pcose

‘2 =psine ..

Now consider the coordinate line Xl = ~ = constant. The equation of
this coordinate line is given parametrically-by

P = cfl~

I

(C6)
e = dlnfll-~ In X2

.-

.

.-. =——
.-. .-

“

.
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Equation (C6)
.

can be expressed as

ee = (X~)dl$l/d

Hence, from eqzations (C!6)and (C7),

P = C(P1)
d2e_ed

or

(C7)

(C8)

p= (const.)e-ed

Similarly, the equation of the coordinate line X2= (const~ =~ is
expressible as

P =

or

P =

.
The curves defined by equations
mutually orthogonal logarithmic
the (p,@) system is interpreted.
plane.

o l/d2ee/d ‘
C(X2)

G

(C9)

(const.)ee/d

(C8) and (C9) constitute a system of
spirals relative to the (p,6) system if
as a system of polar coordinates in the

CHRISTOFFEL SYMBOLS

A brief review of the definition of Cbristoffel symbols is presented
here as an aid in following the ~alyses.

Consider a surface in which an orthogonal coordinate system (X1,X2)
is embedded. ~ such a system the sqyare of the differential of arc
length is given by

{ds)2= h:(~)2 + h:(&)2

when

(Clo)

h2 = h2(~,X2)
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The metric tensor

.-

.
=——
—

g.ij (i= 1,2) associated with (C16) is
.

The tensor gij msy be defined by

(2)
The Christoffel symbol /\{ sametimes

ij

indices

2

H (2k agik
.~—

ij bxj +

imply summation.

‘itten ~j:

-a . . . : . .
.-.

L. : ----

->.

NACA T1.~437

5s then defined

.——

-.

.——-.

.-.

—

..

——

&

.

=—

by

:.r.

—

,-..-—.-—
.-.

.

-.

—

—
G

.-
. . .

—.-
.

r..

Q .. . . . .: -=-=

-.. .==
— .-

--- ..- .-
—-

-,. -- -
— -.—.— -

_.. .—

-.

—.. .
: ““

--- .-—- -

.+ ..- -:--
.-.

.. .

..-
:. ,. ..-

. .-
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APPENDIX D
.

ANALYSIS: K = O; kl = o’%~o” PROOF OF TKECREM 2

By following the ssme procedure that was used in establishing lemma
1, it can be shown that equation (24) becomes

As k2 # O and a. and

cm
1. as in the

E
I&all

.

Hence,.

-L

previous case.

the definition

the definitionRecalJing
and the assumption that

a9 are nonzero constants, it follows that

U1 = c~uz (Dl)

of kl,

hl = f=j(q) (D2)

of the Gaussim curvature of the surface K
Ks O gives

From eqmtions (D2) and (D3),

or
.

(D3)

.

‘6(X2)
k2. —

‘2
(D4)
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At this pofnt, it should be noted that k2 cannot tie

.;,, *---
NAC!ATM 4437. __ .

constant for, if
-- .-k2 ~h2 :

it werej hz s
m ~~2and q

= O, which-would imp& that k2 s O. It
— ak2 – ‘“-““ “-

is also follows that — sO, for if it is assumed””that
bx~

— is zero,
axl

then, from equation (D4),
..-.

~k2 f6(x2) ~~~
——

q= - h: q= 0
.$.. ..-----

ah2
~>

‘6(%) = 0 ‘r

—

Now, either
q

= O implies ~s~, which violates
—
—

the hypothesis.
-.—.

ak2
Assume that ~ ~ O. Then, from conditions @- and @ and the

—
proportionality of U1 and U2,

~2 = b4U1k2

‘“~=y

Hence.,

—.
—.

(D5) -
—

aInk2-
+ -

L . .

.

—.

-. .
—

-. -.. .

Under the assumption, the right side of equation (D6) cannot be zero.
Hence the o.d.e. conditions arising frcm the combinations @ and @

6and 4 and @ along with equation (Dl) yield
—

aInk2

~ = b5h2k2
—

(D7j ““ -

—. , .:—

Similarly, it can be shown that
.

Differentiating equation (D7) wi-threspect to xl and employing equa-
tion (D4) yield

a

a2 in k2

- ‘bs+hzkz=o (D9), .
.—
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Now,
.

that

TM 1437

differentiating eq=tion (D8) with respect to
ahl

z
s O (as kl has been assumed zero) give

67

X2 and recalling

(wi.theq. (D9))

az in k2 ak2

bx2 axl ‘b6hl~=0

~k~
~us, ~ + O is incompatible titk k2 # 0, kl = O, and the 0~ remain-

@
F
Cn
d ing passibi~ty is that k2 is a nonconstant function of xl alone.

Defining k2 = f7(x1) gives from equation (D4)

f6(x2)

‘2=W

0$
&
‘a.

.

(D1O)

(Dll)

From these results, Theorem 2 follows directly.

Because of the symmetrical nature of the equations, similar results
can be obtained if it is first assumed that kz sO and kl#O. fi
this case,

kl . f8(x2)

fg (q)
‘1 = ‘-

and

qxJ
h2=-—

f:(X2)
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APPENDIX E

PROOF

The four cases presented on

(1} Case

constant,
@* (n~h(4~~) results:

Hence,

In a similar manner

OF THECREM

page 2X till now ~e analyzed.
-. ;.._ .:”-.—

A: fi2= const.

the following o.d.e. condition from @* and —
—

%l,k2i31nh2.. . a
ax.

-L

.—
—- -. -.-I =

.—

0 —
.

—
.- —

-.
-8.——-

2-cl~
h2 = k2pl(x2) P1(X2) + o {El) .

from @* and @* there result
.

—
2-C12

hl = k2ql(xl) U(xl) +0 (E2)

Substituting according to equations (43) and (44) @to equation (El)
gives .m. -. —

[

9(Tl)
1

2-C1l

clofi3(x2)e
SA 9’e-QP1(x2)
CIO _..

<Gc11[fi3(xJ12-cll=~,Jcu:3)qs“.
P1(X2)

(E3)
--- -.:

.

Taking the partial derivative of equation (E3) with respect to xl and
assuming CU { 3 give ~

b

—
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Hence,.

~e(cu-3)q
= constsJlt

d;

or

A similar analysis using equations (E2), (42), and (44) yields

l/(cE-3)
T= In(afi+ b)

69

(E4)

(E5)

for C12 + 3. Fran equations (E4) and (ES) it follows that

c~ = c=

If c~ = 3, there results &cm eqxation
hence

(E3) that q)’= constant and

Next consider the case where one of the partial derivatives of ~2
s does

(E7)

not vmish and determine

(2) Case

The o.d.e. condition for

the corresponding form for q.

al.n

-L -L

As 62 is assumed to be a function of xl alone, mom equations

and (43)

(E8)
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It follows from equation (E8) that g’(u) = constant. Hence,

An expression for =2 can be obtained from equations (E7) sad (E8) by “-
solving ,:

-.

.. .—. —.

There results

U2 = (const.)e
C14i!12(Xl) ~

..,. ,--

(E9)

o.d.e. conditions are satisfied.
-. -. ,c-

It can be shown that all remaining

aii2
(3) C!aseC: ~S

case is similar to case B, andFrom synmetry considerations, this
the following results can be stated directly:

.
— — .-.

q=a~+b

6Z = (const.}ec15fZ3(x2) ‘

-L

and

C16

G* givesThe o.d.e. condition for O*
.J-

ab62
—=

dxl
-L —

—
Hence,

..
7j2= hj16q3(@

StiU.arly, from the o.d.e. condition for @* and @“*

62 = h~7P3(xl)

(E1O)

(En) - _. _.

-.
..—.-

..-
. A-

-. z’- ::--=-
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. Equations (EIO)
~

%

71

snd (En) give

C16h2 P3(X1)

q=-
hl

(E12)

Substituting according to equations (42) and (43) into (E12) and
assuming c16+’~7 field

●

9

.

F&am equation (XL3),

(C16 - c17]~= bP4(xl) +fi %&l

Since & o,
‘1 X2=

&Q=o
d;2

“9.. =a~+b

Hence, from equation (E13),

f @l~[f;2{x1)]-c17P3(x1) = (const.)ec18 I-2

and

f13(x.J= (const.)e
[fl-3{x2)l-c’6

c18f~(x2) ,

where

c~8= (c~6 - c~7)a

C19 = -(CM )- C17 ac2

(E13)

(E14)

(E15)
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Now consider the o.d.e. condition involving @* and @*:

& lnl&c20/%k2
...

axl

Substituting according to equation (E1O) in

= o

(E16) giv&

N/WA m
..; . ... . . .-. .-

1437
.

— —. .

(E16) “-’
—

. .. —-
%

. . a
“---- “—

a ~ ~2-(c20*16)
2 /%o-

=
axl

—

“[

blnh2 ~lnk2=
● 2 - (c20+c~6.. )] ~ - T“,..”

Therefore, from equations (43) and (44},

[ 1
2-(c20+c~6)T’+q’=0

..=.

As q’ # O,’it follows that

C20 +’C16 = 3 _ .—..

Frcm @* and O* a similar relation between constants results, and no
new information is obtained. Remaining o.d.e. conditions are readily

.

—. -.

shown to be satisfied.

Finally, consider the possibility c16 =
becomes

and it follows at once that

P3(X1) =

q+z) =

At this point, the analysis for

C17.

c21[fi2%)l-c16

df~Jxd-c16

E@ation (E12) th~
—
—

—
+-

----

-L -. ‘i=

.— .-.-.
q follows the same w_ttern as given

for case-A, and the same eqmtions for q are determined. -Theorem 4
follows at once.

—-

—

a

.

.,

.-

.—

—

.

b-

.
—

—.
—
.:
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.

ANALYSIS:

Four possible

o
4
IA
v

Setting H2 =

must be satisfied.

APPENDIX F

U1 = @2; kl * 0> % =

casesare distinguished

o. EROOF OFTEECREM 6

as in previous analyses.

Case A: 62 = constant

constant results in three o.d.e.
These conditions can be obtained

conditions which

from the list in
set (45) and, after simplification, the terms that must be proportional
are ~he”following:

The o.d.e.

Hence, either

or

or

@* k2

condition for

2% -

a&

(C22 - 2)h1 = ~ (C22 + 2)

Abo from @* and @* there is the possibility that either

(Fl)

(F2)

(F3)

ak-l
hz = C23 —

3X2
(F4)
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.

and .If equations (Fl) and (F3) hold, then kz = constant

.
—
.—

that equation (F4) is valid, there is obtained uponIf it is assumed
differentiation

&&~
from equation (Fl) or (F2) it can be shown-that ~so.

bh2 % ‘1

would ”implythat ~= hl~~ = 0, which &olates the hypo-

Eowever,

But this

thesis. Eence, the one remaining possibility is

,....
.-.—

. -.—Therefore,
.—

k2 = Pl(xl) (F7)

From equation (F2) it then follows that
.—

Pi(Xl)
hl=~—

-1% p:(xl)
(F8)

Now,

(F9)‘m‘2=[pl(xl)r’(2-c22)ql(x2
—

*--= :.* —

. .
.-. .-m—
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.

In
& By an analysis sind+x to that given for case
+ that hl, hz, ~, and U2 must have the following

●

✎

.

The solutions.

with hl and ~

-with ~, hl> SJId

respectively.

The solutions

J-q’J~~52 = (const.)e

Pi(xl)
hi=. —

P:(xl)

A, it can be shown
forms:

for hl, h2, k2~ ~d [() 1ti2 are 62 = pl xl + co~t”
k.

defined by eqgation (T’S)or & = (const. ) *

~ defined hyequatlons (F7), (F8), and (Y9),

for hl, h2, k2~ ~d ~2 are
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As mentioned previously, the case where k2 ~ O gives sW- re- .
suits, with the roles of xl and x2 interchanged (from symmetry con-

siderations). Theorm 6 re~dily follows.

1.

2*

3*

4.

5.

6.

7.

8.

9.

10 ●

11.

12.
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Figure 1. - Coordinate system and orientation-of velocity
components for flow over a surface.
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X2 = constant

*

.

Figure 2. -
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System of spiral coordinates.


